MAYBE 104.169 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could not be shown:



HASKELL
  ↳ BR

mainModule Main
  ((enumFromThenTo :: Ordering  ->  Ordering  ->  Ordering  ->  [Ordering]) :: Ordering  ->  Ordering  ->  Ordering  ->  [Ordering])

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((enumFromThenTo :: Ordering  ->  Ordering  ->  Ordering  ->  [Ordering]) :: Ordering  ->  Ordering  ->  Ordering  ->  [Ordering])

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False

The following Function with conditions
p 
 | n' >= n
 = flip (<=) m
 | otherwise
 = flip (>=) m

is transformed to
p  = p2

p1 True = flip (<=) m
p1 False = p0 otherwise

p0 True = flip (>=) m

p2  = p1 (n' >= n)

The following Function with conditions
takeWhile p [] = []
takeWhile p (x : xs)
 | p x
 = x : takeWhile p xs
 | otherwise
 = []

is transformed to
takeWhile p [] = takeWhile3 p []
takeWhile p (x : xs) = takeWhile2 p (x : xs)

takeWhile1 p x xs True = x : takeWhile p xs
takeWhile1 p x xs False = takeWhile0 p x xs otherwise

takeWhile0 p x xs True = []

takeWhile2 p (x : xs) = takeWhile1 p x xs (p x)

takeWhile3 p [] = []
takeWhile3 wv ww = takeWhile2 wv ww

The following Function with conditions
toEnum 0 = LT
toEnum 1 = EQ
toEnum 2 = GT

is transformed to
toEnum xw = toEnum5 xw
toEnum wy = toEnum3 wy
toEnum wx = toEnum1 wx

toEnum0 True wx = GT

toEnum1 wx = toEnum0 (wx == 2) wx

toEnum2 True wy = EQ
toEnum2 wz xu = toEnum1 xu

toEnum3 wy = toEnum2 (wy == 1) wy
toEnum3 xv = toEnum1 xv

toEnum4 True xw = LT
toEnum4 xx xy = toEnum3 xy

toEnum5 xw = toEnum4 (xw == 0) xw
toEnum5 xz = toEnum3 xz



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ LetRed

mainModule Main
  ((enumFromThenTo :: Ordering  ->  Ordering  ->  Ordering  ->  [Ordering]) :: Ordering  ->  Ordering  ->  Ordering  ->  [Ordering])

module Main where
  import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
takeWhile p (numericEnumFromThen n n')
where 
p  = p2
p0 True = flip (>=) m
p1 True = flip (<=) m
p1 False = p0 otherwise
p2  = p1 (n' >= n)

are unpacked to the following functions on top level
numericEnumFromThenToP2 yu yv yw = numericEnumFromThenToP1 yu yv yw (yu >= yv)

numericEnumFromThenToP1 yu yv yw True = flip (<=) yw
numericEnumFromThenToP1 yu yv yw False = numericEnumFromThenToP0 yu yv yw otherwise

numericEnumFromThenToP yu yv yw = numericEnumFromThenToP2 yu yv yw

numericEnumFromThenToP0 yu yv yw True = flip (>=) yw



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
HASKELL
              ↳ NumRed

mainModule Main
  ((enumFromThenTo :: Ordering  ->  Ordering  ->  Ordering  ->  [Ordering]) :: Ordering  ->  Ordering  ->  Ordering  ->  [Ordering])

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
HASKELL
                  ↳ Narrow
                  ↳ Narrow

mainModule Main
  (enumFromThenTo :: Ordering  ->  Ordering  ->  Ordering  ->  [Ordering])

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(:(Neg(Zero), yx161)) → new_takeWhile(yx161)
new_takeWhile(:(Pos(Zero), yx161)) → new_takeWhile(yx161)
new_takeWhile(:(Pos(Succ(Succ(Zero))), yx161)) → new_takeWhile(yx161)
new_takeWhile(:(Pos(Succ(Zero)), yx161)) → new_takeWhile(yx161)
new_takeWhile(:(Neg(Succ(yx16000)), yx161)) → new_takeWhile(yx161)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(:(Pos(Zero), yx151)) → new_takeWhile1(yx151)
new_takeWhile0(:(Pos(Zero), yx151)) → new_takeWhile1(yx151)
new_takeWhile1(:(Pos(Succ(Zero)), yx151)) → new_takeWhile0(yx151)
new_takeWhile0(:(Neg(Succ(yx15000)), yx151)) → new_takeWhile0(yx151)
new_takeWhile1(:(Neg(Zero), yx151)) → new_takeWhile0(yx151)
new_takeWhile0(:(Neg(Zero), yx151)) → new_takeWhile0(yx151)
new_takeWhile0(:(Pos(Succ(Zero)), yx151)) → new_takeWhile0(yx151)
new_takeWhile1(:(Neg(Succ(yx15000)), yx151)) → new_takeWhile0(yx151)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNat(Succ(yx2600), Succ(yx2300)) → new_primMinusNat(yx2600, yx2300)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(yx2600), Succ(yx2300)) → new_primPlusNat(yx2600, yx2300)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate(yx25) → new_iterate(new_ps(yx25))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_ps(yx25) → new_primPlusInt(new_primMinusNat0(Succ(Succ(Zero)), Succ(Succ(Zero))), yx25)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_ps(x0)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate(yx25) → new_iterate(new_ps(yx25)) at position [0] we obtained the following new rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(new_primMinusNat0(Succ(Succ(Zero)), Succ(Succ(Zero))), yx25))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
QDP
                            ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(new_primMinusNat0(Succ(Succ(Zero)), Succ(Succ(Zero))), yx25))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_ps(yx25) → new_primPlusInt(new_primMinusNat0(Succ(Succ(Zero)), Succ(Succ(Zero))), yx25)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_ps(x0)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QReductionProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(new_primMinusNat0(Succ(Succ(Zero)), Succ(Succ(Zero))), yx25))

The TRS R consists of the following rules:

new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_ps(x0)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_ps(x0)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
QDP
                                    ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(new_primMinusNat0(Succ(Succ(Zero)), Succ(Succ(Zero))), yx25))

The TRS R consists of the following rules:

new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate(yx25) → new_iterate(new_primPlusInt(new_primMinusNat0(Succ(Succ(Zero)), Succ(Succ(Zero))), yx25)) at position [0,0] we obtained the following new rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(new_primMinusNat0(Succ(Zero), Succ(Zero)), yx25))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(new_primMinusNat0(Succ(Zero), Succ(Zero)), yx25))

The TRS R consists of the following rules:

new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate(yx25) → new_iterate(new_primPlusInt(new_primMinusNat0(Succ(Zero), Succ(Zero)), yx25)) at position [0,0] we obtained the following new rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(new_primMinusNat0(Zero, Zero), yx25))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(new_primMinusNat0(Zero, Zero), yx25))

The TRS R consists of the following rules:

new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate(yx25) → new_iterate(new_primPlusInt(new_primMinusNat0(Zero, Zero), yx25)) at position [0,0] we obtained the following new rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(Pos(Zero), yx25))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
QDP
                                                ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(Pos(Zero), yx25))

The TRS R consists of the following rules:

new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ UsableRulesProof
QDP
                                                    ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(Pos(Zero), yx25))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = x1   
POL(Pos(x1)) = x1   
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_iterate(x1)) = x1   
POL(new_primMinusNat0(x1, x2)) = 2·x1 + x2   
POL(new_primPlusInt(x1, x2)) = 2·x1 + x2   
POL(new_primPlusNat0(x1, x2)) = 2·x1 + x2   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ UsableRulesProof
                                                  ↳ QDP
                                                    ↳ RuleRemovalProof
QDP
                                                        ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(Pos(Zero), yx25))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primMinusNat0(Zero, Zero) → Pos(Zero)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = 1 + x1   
POL(Pos(x1)) = x1   
POL(Succ(x1)) = x1   
POL(Zero) = 0   
POL(new_iterate(x1)) = 2·x1   
POL(new_primMinusNat0(x1, x2)) = 1 + x1 + x2   
POL(new_primPlusInt(x1, x2)) = 2·x1 + x2   
POL(new_primPlusNat0(x1, x2)) = x1 + x2   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ UsableRulesProof
                                                  ↳ QDP
                                                    ↳ RuleRemovalProof
                                                      ↳ QDP
                                                        ↳ RuleRemovalProof
QDP
                                                            ↳ NonTerminationProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(Pos(Zero), yx25))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_iterate(yx25) → new_iterate(new_primPlusInt(Pos(Zero), yx25))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)


s = new_iterate(yx25) evaluates to t =new_iterate(new_primPlusInt(Pos(Zero), yx25))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_iterate(yx25) to new_iterate(new_primPlusInt(Pos(Zero), yx25)).





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate0(yx24) → new_iterate0(new_ps0(yx24))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_ps0(yx24) → new_primPlusInt(new_primMinusNat0(Succ(Zero), Zero), yx24)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_ps0(x0)
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate0(yx24) → new_iterate0(new_ps0(yx24)) at position [0] we obtained the following new rules:

new_iterate0(yx24) → new_iterate0(new_primPlusInt(new_primMinusNat0(Succ(Zero), Zero), yx24))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
QDP
                            ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate0(yx24) → new_iterate0(new_primPlusInt(new_primMinusNat0(Succ(Zero), Zero), yx24))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_ps0(yx24) → new_primPlusInt(new_primMinusNat0(Succ(Zero), Zero), yx24)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_ps0(x0)
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QReductionProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate0(yx24) → new_iterate0(new_primPlusInt(new_primMinusNat0(Succ(Zero), Zero), yx24))

The TRS R consists of the following rules:

new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_ps0(x0)
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_ps0(x0)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
QDP
                                    ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate0(yx24) → new_iterate0(new_primPlusInt(new_primMinusNat0(Succ(Zero), Zero), yx24))

The TRS R consists of the following rules:

new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate0(yx24) → new_iterate0(new_primPlusInt(new_primMinusNat0(Succ(Zero), Zero), yx24)) at position [0,0] we obtained the following new rules:

new_iterate0(yx24) → new_iterate0(new_primPlusInt(Pos(Succ(Zero)), yx24))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate0(yx24) → new_iterate0(new_primPlusInt(Pos(Succ(Zero)), yx24))

The TRS R consists of the following rules:

new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ UsableRulesProof
QDP
                                            ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate0(yx24) → new_iterate0(new_primPlusInt(Pos(Succ(Zero)), yx24))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Zero) → Pos(Zero)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = 1 + x1   
POL(Pos(x1)) = x1   
POL(Succ(x1)) = x1   
POL(Zero) = 0   
POL(new_iterate0(x1)) = x1   
POL(new_primMinusNat0(x1, x2)) = 1 + 2·x1 + x2   
POL(new_primPlusInt(x1, x2)) = 2·x1 + x2   
POL(new_primPlusNat0(x1, x2)) = x1 + x2   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ RuleRemovalProof
QDP
                                                ↳ NonTerminationProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate0(yx24) → new_iterate0(new_primPlusInt(Pos(Succ(Zero)), yx24))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_iterate0(yx24) → new_iterate0(new_primPlusInt(Pos(Succ(Zero)), yx24))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))


s = new_iterate0(yx24) evaluates to t =new_iterate0(new_primPlusInt(Pos(Succ(Zero)), yx24))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_iterate0(yx24) to new_iterate0(new_primPlusInt(Pos(Succ(Zero)), yx24)).





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate1(yx20) → new_iterate1(new_ps1(yx20))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_msPos(Succ(Succ(Zero)))
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_ps1(yx20) → new_primPlusInt(new_ms, yx20)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_ps1(x0)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_ms
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = 2 + x1   
POL(Pos(x1)) = x1   
POL(Succ(x1)) = x1   
POL(Zero) = 0   
POL(new_iterate1(x1)) = 2·x1   
POL(new_ms) = 0   
POL(new_primMinusNat0(x1, x2)) = 2 + x1 + x2   
POL(new_primPlusInt(x1, x2)) = 2·x1 + x2   
POL(new_primPlusNat0(x1, x2)) = x1 + x2   
POL(new_ps1(x1)) = x1   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate1(yx20) → new_iterate1(new_ps1(yx20))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_msPos(Succ(Succ(Zero)))
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_ps1(yx20) → new_primPlusInt(new_ms, yx20)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_ps1(x0)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_ms
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate1(yx20) → new_iterate1(new_ps1(yx20)) at position [0] we obtained the following new rules:

new_iterate1(yx20) → new_iterate1(new_primPlusInt(new_ms, yx20))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate1(yx20) → new_iterate1(new_primPlusInt(new_ms, yx20))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_msPos(Succ(Succ(Zero)))
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_ps1(yx20) → new_primPlusInt(new_ms, yx20)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_ps1(x0)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_ms
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QReductionProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate1(yx20) → new_iterate1(new_primPlusInt(new_ms, yx20))

The TRS R consists of the following rules:

new_msPos(Succ(Succ(Zero)))
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_ps1(x0)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_ms
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_ps1(x0)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
QDP
                                        ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate1(yx20) → new_iterate1(new_primPlusInt(new_ms, yx20))

The TRS R consists of the following rules:

new_msPos(Succ(Succ(Zero)))
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_ms
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate1(yx20) → new_iterate1(new_primPlusInt(new_ms, yx20)) at position [0,0] we obtained the following new rules:

new_iterate1(yx20) → new_iterate1(new_primPlusInt(Pos(Succ(Succ(Zero))), yx20))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate1(yx20) → new_iterate1(new_primPlusInt(Pos(Succ(Succ(Zero))), yx20))

The TRS R consists of the following rules:

new_msPos(Succ(Succ(Zero)))
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_ms
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate1(yx20) → new_iterate1(new_primPlusInt(Pos(Succ(Succ(Zero))), yx20))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_ms
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_ms



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ NonTerminationProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate1(yx20) → new_iterate1(new_primPlusInt(Pos(Succ(Succ(Zero))), yx20))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_iterate1(yx20) → new_iterate1(new_primPlusInt(Pos(Succ(Succ(Zero))), yx20))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))


s = new_iterate1(yx20) evaluates to t =new_iterate1(new_primPlusInt(Pos(Succ(Succ(Zero))), yx20))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_iterate1(yx20) to new_iterate1(new_primPlusInt(Pos(Succ(Succ(Zero))), yx20)).





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate2(yx23) → new_iterate2(new_ps2(yx23))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_ps2(yx23) → new_primPlusInt(new_primMinusNat0(Zero, Zero), yx23)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_ps2(x0)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = x1   
POL(Pos(x1)) = x1   
POL(Succ(x1)) = 2 + x1   
POL(Zero) = 0   
POL(new_iterate2(x1)) = x1   
POL(new_primMinusNat0(x1, x2)) = x1 + x2   
POL(new_primPlusInt(x1, x2)) = 2·x1 + x2   
POL(new_primPlusNat0(x1, x2)) = x1 + x2   
POL(new_ps2(x1)) = x1   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate2(yx23) → new_iterate2(new_ps2(yx23))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_ps2(yx23) → new_primPlusInt(new_primMinusNat0(Zero, Zero), yx23)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_ps2(x0)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = x1   
POL(Pos(x1)) = x1   
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_iterate2(x1)) = 2·x1   
POL(new_primMinusNat0(x1, x2)) = x1 + x2   
POL(new_primPlusInt(x1, x2)) = 2·x1 + x2   
POL(new_primPlusNat0(x1, x2)) = 2·x1 + x2   
POL(new_ps2(x1)) = x1   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
QDP
                                ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate2(yx23) → new_iterate2(new_ps2(yx23))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_ps2(yx23) → new_primPlusInt(new_primMinusNat0(Zero, Zero), yx23)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_ps2(x0)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate2(yx23) → new_iterate2(new_ps2(yx23)) at position [0] we obtained the following new rules:

new_iterate2(yx23) → new_iterate2(new_primPlusInt(new_primMinusNat0(Zero, Zero), yx23))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate2(yx23) → new_iterate2(new_primPlusInt(new_primMinusNat0(Zero, Zero), yx23))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_ps2(yx23) → new_primPlusInt(new_primMinusNat0(Zero, Zero), yx23)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_ps2(x0)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
QDP
                                        ↳ QReductionProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate2(yx23) → new_iterate2(new_primPlusInt(new_primMinusNat0(Zero, Zero), yx23))

The TRS R consists of the following rules:

new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_ps2(x0)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_ps2(x0)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
QDP
                                            ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate2(yx23) → new_iterate2(new_primPlusInt(new_primMinusNat0(Zero, Zero), yx23))

The TRS R consists of the following rules:

new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate2(yx23) → new_iterate2(new_primPlusInt(new_primMinusNat0(Zero, Zero), yx23)) at position [0,0] we obtained the following new rules:

new_iterate2(yx23) → new_iterate2(new_primPlusInt(Pos(Zero), yx23))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
QDP
                                                ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate2(yx23) → new_iterate2(new_primPlusInt(Pos(Zero), yx23))

The TRS R consists of the following rules:

new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ UsableRulesProof
QDP
                                                    ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate2(yx23) → new_iterate2(new_primPlusInt(Pos(Zero), yx23))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = 1 + 2·x1   
POL(Pos(x1)) = 2·x1   
POL(Succ(x1)) = x1   
POL(Zero) = 0   
POL(new_iterate2(x1)) = x1   
POL(new_primMinusNat0(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(new_primPlusInt(x1, x2)) = 2·x1 + x2   
POL(new_primPlusNat0(x1, x2)) = x1 + x2   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ UsableRulesProof
                                                  ↳ QDP
                                                    ↳ RuleRemovalProof
QDP
                                                        ↳ NonTerminationProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate2(yx23) → new_iterate2(new_primPlusInt(Pos(Zero), yx23))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_iterate2(yx23) → new_iterate2(new_primPlusInt(Pos(Zero), yx23))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)


s = new_iterate2(yx23) evaluates to t =new_iterate2(new_primPlusInt(Pos(Zero), yx23))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_iterate2(yx23) to new_iterate2(new_primPlusInt(Pos(Zero), yx23)).





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate3(yx19) → new_iterate3(new_ps3(yx19))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_ps3(yx19) → new_primPlusInt(Pos(Succ(Zero)), yx19)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_ps3(x0)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate3(yx19) → new_iterate3(new_ps3(yx19))

The TRS R consists of the following rules:

new_ps3(yx19) → new_primPlusInt(Pos(Succ(Zero)), yx19)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_ps3(x0)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = 1 + x1   
POL(Pos(x1)) = x1   
POL(Succ(x1)) = x1   
POL(Zero) = 0   
POL(new_iterate3(x1)) = 2·x1   
POL(new_primMinusNat0(x1, x2)) = 1 + x1 + x2   
POL(new_primPlusInt(x1, x2)) = 2·x1 + x2   
POL(new_primPlusNat0(x1, x2)) = x1 + x2   
POL(new_ps3(x1)) = x1   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ RuleRemovalProof
QDP
                                ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate3(yx19) → new_iterate3(new_ps3(yx19))

The TRS R consists of the following rules:

new_ps3(yx19) → new_primPlusInt(Pos(Succ(Zero)), yx19)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_ps3(x0)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate3(yx19) → new_iterate3(new_ps3(yx19)) at position [0] we obtained the following new rules:

new_iterate3(yx19) → new_iterate3(new_primPlusInt(Pos(Succ(Zero)), yx19))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate3(yx19) → new_iterate3(new_primPlusInt(Pos(Succ(Zero)), yx19))

The TRS R consists of the following rules:

new_ps3(yx19) → new_primPlusInt(Pos(Succ(Zero)), yx19)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_ps3(x0)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
QDP
                                        ↳ QReductionProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate3(yx19) → new_iterate3(new_primPlusInt(Pos(Succ(Zero)), yx19))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_ps3(x0)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_ps3(x0)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ QReductionProof
QDP
                                            ↳ NonTerminationProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate3(yx19) → new_iterate3(new_primPlusInt(Pos(Succ(Zero)), yx19))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_iterate3(yx19) → new_iterate3(new_primPlusInt(Pos(Succ(Zero)), yx19))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))


s = new_iterate3(yx19) evaluates to t =new_iterate3(new_primPlusInt(Pos(Succ(Zero)), yx19))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_iterate3(yx19) to new_iterate3(new_primPlusInt(Pos(Succ(Zero)), yx19)).





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ Instantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile10(yx48, yx53, yx49, Pos(Succ(Succ(Zero)))) → new_takeWhile11(yx48, yx53, yx49)
new_takeWhile10(yx48, yx53, yx49, Pos(Succ(Succ(Succ(yx540000))))) → new_takeWhile2(yx49, yx53, new_primPlusInt(yx53, yx49))
new_takeWhile11(yx48, yx53, yx49) → new_takeWhile2(yx49, yx53, new_primPlusInt(yx53, yx49))
new_takeWhile2(yx49, yx53, yx62) → new_takeWhile10(yx49, yx53, yx62, yx49)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_takeWhile10(yx48, yx53, yx49, Pos(Succ(Succ(Zero)))) → new_takeWhile11(yx48, yx53, yx49) we obtained the following new rules:

new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero)))) → new_takeWhile11(Pos(Succ(Succ(Zero))), z1, z2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
QDP
                            ↳ Instantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile10(yx48, yx53, yx49, Pos(Succ(Succ(Succ(yx540000))))) → new_takeWhile2(yx49, yx53, new_primPlusInt(yx53, yx49))
new_takeWhile11(yx48, yx53, yx49) → new_takeWhile2(yx49, yx53, new_primPlusInt(yx53, yx49))
new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero)))) → new_takeWhile11(Pos(Succ(Succ(Zero))), z1, z2)
new_takeWhile2(yx49, yx53, yx62) → new_takeWhile10(yx49, yx53, yx62, yx49)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_takeWhile10(yx48, yx53, yx49, Pos(Succ(Succ(Succ(yx540000))))) → new_takeWhile2(yx49, yx53, new_primPlusInt(yx53, yx49)) we obtained the following new rules:

new_takeWhile10(Pos(Succ(Succ(Succ(x3)))), z1, z2, Pos(Succ(Succ(Succ(x3))))) → new_takeWhile2(z2, z1, new_primPlusInt(z1, z2))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
QDP
                                ↳ Instantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile10(Pos(Succ(Succ(Succ(x3)))), z1, z2, Pos(Succ(Succ(Succ(x3))))) → new_takeWhile2(z2, z1, new_primPlusInt(z1, z2))
new_takeWhile11(yx48, yx53, yx49) → new_takeWhile2(yx49, yx53, new_primPlusInt(yx53, yx49))
new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero)))) → new_takeWhile11(Pos(Succ(Succ(Zero))), z1, z2)
new_takeWhile2(yx49, yx53, yx62) → new_takeWhile10(yx49, yx53, yx62, yx49)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_takeWhile11(yx48, yx53, yx49) → new_takeWhile2(yx49, yx53, new_primPlusInt(yx53, yx49)) we obtained the following new rules:

new_takeWhile11(Pos(Succ(Succ(Zero))), z0, z1) → new_takeWhile2(z1, z0, new_primPlusInt(z0, z1))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile10(Pos(Succ(Succ(Succ(x3)))), z1, z2, Pos(Succ(Succ(Succ(x3))))) → new_takeWhile2(z2, z1, new_primPlusInt(z1, z2))
new_takeWhile11(Pos(Succ(Succ(Zero))), z0, z1) → new_takeWhile2(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero)))) → new_takeWhile11(Pos(Succ(Succ(Zero))), z1, z2)
new_takeWhile2(yx49, yx53, yx62) → new_takeWhile10(yx49, yx53, yx62, yx49)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables Pos(Succ(Succ(Zero))) is replaced by the fresh variable x_removed.
Pair: new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero)))) → new_takeWhile11(Pos(Succ(Succ(Zero))), z1, z2)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[13].

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
QDP
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile10(Pos(Succ(Succ(Succ(x3)))), z1, z2, Pos(Succ(Succ(Succ(x3)))), x_removed) → new_takeWhile2(z2, z1, new_primPlusInt(z1, z2), x_removed)
new_takeWhile11(Pos(Succ(Succ(Zero))), z0, z1, x_removed) → new_takeWhile2(z1, z0, new_primPlusInt(z0, z1), x_removed)
new_takeWhile2(yx49, yx53, yx62, x_removed) → new_takeWhile10(yx49, yx53, yx62, yx49, x_removed)
new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero))), x_removed) → new_takeWhile11(x_removed, z1, z2, x_removed)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables Pos(Succ(Succ(Zero))) is replaced by the fresh variable x_removed.
Pair: new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero)))) → new_takeWhile11(Pos(Succ(Succ(Zero))), z1, z2)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[13].

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
QDP
                                    ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile10(Pos(Succ(Succ(Succ(x3)))), z1, z2, Pos(Succ(Succ(Succ(x3)))), x_removed) → new_takeWhile2(z2, z1, new_primPlusInt(z1, z2), x_removed)
new_takeWhile11(Pos(Succ(Succ(Zero))), z0, z1, x_removed) → new_takeWhile2(z1, z0, new_primPlusInt(z0, z1), x_removed)
new_takeWhile2(yx49, yx53, yx62, x_removed) → new_takeWhile10(yx49, yx53, yx62, yx49, x_removed)
new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero))), x_removed) → new_takeWhile11(x_removed, z1, z2, x_removed)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_takeWhile2(yx49, yx53, yx62) → new_takeWhile10(yx49, yx53, yx62, yx49) we obtained the following new rules:

new_takeWhile2(Pos(Succ(Succ(Zero))), x1, x2) → new_takeWhile10(Pos(Succ(Succ(Zero))), x1, x2, Pos(Succ(Succ(Zero))))
new_takeWhile2(Pos(Succ(Succ(Succ(y_0)))), x1, x2) → new_takeWhile10(Pos(Succ(Succ(Succ(y_0)))), x1, x2, Pos(Succ(Succ(Succ(y_0)))))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
QDP
                                        ↳ RemovalProof
                                        ↳ RemovalProof
                                        ↳ MNOCProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile2(Pos(Succ(Succ(Zero))), x1, x2) → new_takeWhile10(Pos(Succ(Succ(Zero))), x1, x2, Pos(Succ(Succ(Zero))))
new_takeWhile2(Pos(Succ(Succ(Succ(y_0)))), x1, x2) → new_takeWhile10(Pos(Succ(Succ(Succ(y_0)))), x1, x2, Pos(Succ(Succ(Succ(y_0)))))
new_takeWhile10(Pos(Succ(Succ(Succ(x3)))), z1, z2, Pos(Succ(Succ(Succ(x3))))) → new_takeWhile2(z2, z1, new_primPlusInt(z1, z2))
new_takeWhile11(Pos(Succ(Succ(Zero))), z0, z1) → new_takeWhile2(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero)))) → new_takeWhile11(Pos(Succ(Succ(Zero))), z1, z2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables Pos(Succ(Succ(Zero))) is replaced by the fresh variable x_removed.
Pair: new_takeWhile2(Pos(Succ(Succ(Zero))), x1, x2) → new_takeWhile10(Pos(Succ(Succ(Zero))), x1, x2, Pos(Succ(Succ(Zero))))
Positions in right side of the pair: Pair: new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero)))) → new_takeWhile11(Pos(Succ(Succ(Zero))), z1, z2)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[13].

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ RemovalProof
QDP
                                        ↳ RemovalProof
                                        ↳ MNOCProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile2(Pos(Succ(Succ(Zero))), x1, x2, x_removed) → new_takeWhile10(x_removed, x1, x2, x_removed, x_removed)
new_takeWhile2(Pos(Succ(Succ(Succ(y_0)))), x1, x2, x_removed) → new_takeWhile10(Pos(Succ(Succ(Succ(y_0)))), x1, x2, Pos(Succ(Succ(Succ(y_0)))), x_removed)
new_takeWhile10(Pos(Succ(Succ(Succ(x3)))), z1, z2, Pos(Succ(Succ(Succ(x3)))), x_removed) → new_takeWhile2(z2, z1, new_primPlusInt(z1, z2), x_removed)
new_takeWhile11(Pos(Succ(Succ(Zero))), z0, z1, x_removed) → new_takeWhile2(z1, z0, new_primPlusInt(z0, z1), x_removed)
new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero))), x_removed) → new_takeWhile11(x_removed, z1, z2, x_removed)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables Pos(Succ(Succ(Zero))) is replaced by the fresh variable x_removed.
Pair: new_takeWhile2(Pos(Succ(Succ(Zero))), x1, x2) → new_takeWhile10(Pos(Succ(Succ(Zero))), x1, x2, Pos(Succ(Succ(Zero))))
Positions in right side of the pair: Pair: new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero)))) → new_takeWhile11(Pos(Succ(Succ(Zero))), z1, z2)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[13].

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ RemovalProof
                                        ↳ RemovalProof
QDP
                                        ↳ MNOCProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile2(Pos(Succ(Succ(Zero))), x1, x2, x_removed) → new_takeWhile10(x_removed, x1, x2, x_removed, x_removed)
new_takeWhile2(Pos(Succ(Succ(Succ(y_0)))), x1, x2, x_removed) → new_takeWhile10(Pos(Succ(Succ(Succ(y_0)))), x1, x2, Pos(Succ(Succ(Succ(y_0)))), x_removed)
new_takeWhile10(Pos(Succ(Succ(Succ(x3)))), z1, z2, Pos(Succ(Succ(Succ(x3)))), x_removed) → new_takeWhile2(z2, z1, new_primPlusInt(z1, z2), x_removed)
new_takeWhile11(Pos(Succ(Succ(Zero))), z0, z1, x_removed) → new_takeWhile2(z1, z0, new_primPlusInt(z0, z1), x_removed)
new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero))), x_removed) → new_takeWhile11(x_removed, z1, z2, x_removed)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ RemovalProof
                                        ↳ RemovalProof
                                        ↳ MNOCProof
QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile2(Pos(Succ(Succ(Zero))), x1, x2) → new_takeWhile10(Pos(Succ(Succ(Zero))), x1, x2, Pos(Succ(Succ(Zero))))
new_takeWhile2(Pos(Succ(Succ(Succ(y_0)))), x1, x2) → new_takeWhile10(Pos(Succ(Succ(Succ(y_0)))), x1, x2, Pos(Succ(Succ(Succ(y_0)))))
new_takeWhile10(Pos(Succ(Succ(Succ(x3)))), z1, z2, Pos(Succ(Succ(Succ(x3))))) → new_takeWhile2(z2, z1, new_primPlusInt(z1, z2))
new_takeWhile11(Pos(Succ(Succ(Zero))), z0, z1) → new_takeWhile2(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile10(Pos(Succ(Succ(Zero))), z1, z2, Pos(Succ(Succ(Zero)))) → new_takeWhile11(Pos(Succ(Succ(Zero))), z1, z2)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

Q is empty.
We have to consider all (P,Q,R)-chains.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ Instantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile13(yx35, yx47, yx36) → new_takeWhile3(yx36, yx47, new_primPlusInt(yx47, yx36))
new_takeWhile12(yx35, yx47, yx36, Pos(Succ(Succ(yx38000)))) → new_takeWhile3(yx36, yx47, new_primPlusInt(yx47, yx36))
new_takeWhile12(yx35, yx47, yx36, Pos(Succ(Zero))) → new_takeWhile13(yx35, yx47, yx36)
new_takeWhile3(yx36, yx47, yx61) → new_takeWhile12(yx36, yx47, yx61, yx36)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_takeWhile12(yx35, yx47, yx36, Pos(Succ(Succ(yx38000)))) → new_takeWhile3(yx36, yx47, new_primPlusInt(yx47, yx36)) we obtained the following new rules:

new_takeWhile12(Pos(Succ(Succ(x3))), z1, z2, Pos(Succ(Succ(x3)))) → new_takeWhile3(z2, z1, new_primPlusInt(z1, z2))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
QDP
                            ↳ Instantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile13(yx35, yx47, yx36) → new_takeWhile3(yx36, yx47, new_primPlusInt(yx47, yx36))
new_takeWhile12(yx35, yx47, yx36, Pos(Succ(Zero))) → new_takeWhile13(yx35, yx47, yx36)
new_takeWhile12(Pos(Succ(Succ(x3))), z1, z2, Pos(Succ(Succ(x3)))) → new_takeWhile3(z2, z1, new_primPlusInt(z1, z2))
new_takeWhile3(yx36, yx47, yx61) → new_takeWhile12(yx36, yx47, yx61, yx36)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_takeWhile12(yx35, yx47, yx36, Pos(Succ(Zero))) → new_takeWhile13(yx35, yx47, yx36) we obtained the following new rules:

new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero))) → new_takeWhile13(Pos(Succ(Zero)), z1, z2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
QDP
                                ↳ Instantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero))) → new_takeWhile13(Pos(Succ(Zero)), z1, z2)
new_takeWhile13(yx35, yx47, yx36) → new_takeWhile3(yx36, yx47, new_primPlusInt(yx47, yx36))
new_takeWhile12(Pos(Succ(Succ(x3))), z1, z2, Pos(Succ(Succ(x3)))) → new_takeWhile3(z2, z1, new_primPlusInt(z1, z2))
new_takeWhile3(yx36, yx47, yx61) → new_takeWhile12(yx36, yx47, yx61, yx36)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_takeWhile13(yx35, yx47, yx36) → new_takeWhile3(yx36, yx47, new_primPlusInt(yx47, yx36)) we obtained the following new rules:

new_takeWhile13(Pos(Succ(Zero)), z0, z1) → new_takeWhile3(z1, z0, new_primPlusInt(z0, z1))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero))) → new_takeWhile13(Pos(Succ(Zero)), z1, z2)
new_takeWhile13(Pos(Succ(Zero)), z0, z1) → new_takeWhile3(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile12(Pos(Succ(Succ(x3))), z1, z2, Pos(Succ(Succ(x3)))) → new_takeWhile3(z2, z1, new_primPlusInt(z1, z2))
new_takeWhile3(yx36, yx47, yx61) → new_takeWhile12(yx36, yx47, yx61, yx36)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables Pos(Succ(Zero)) is replaced by the fresh variable x_removed.
Pair: new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero))) → new_takeWhile13(Pos(Succ(Zero)), z1, z2)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[13].

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
QDP
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile13(Pos(Succ(Zero)), z0, z1, x_removed) → new_takeWhile3(z1, z0, new_primPlusInt(z0, z1), x_removed)
new_takeWhile3(yx36, yx47, yx61, x_removed) → new_takeWhile12(yx36, yx47, yx61, yx36, x_removed)
new_takeWhile12(Pos(Succ(Succ(x3))), z1, z2, Pos(Succ(Succ(x3))), x_removed) → new_takeWhile3(z2, z1, new_primPlusInt(z1, z2), x_removed)
new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero)), x_removed) → new_takeWhile13(x_removed, z1, z2, x_removed)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables Pos(Succ(Zero)) is replaced by the fresh variable x_removed.
Pair: new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero))) → new_takeWhile13(Pos(Succ(Zero)), z1, z2)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[13].

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
QDP
                                    ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile13(Pos(Succ(Zero)), z0, z1, x_removed) → new_takeWhile3(z1, z0, new_primPlusInt(z0, z1), x_removed)
new_takeWhile3(yx36, yx47, yx61, x_removed) → new_takeWhile12(yx36, yx47, yx61, yx36, x_removed)
new_takeWhile12(Pos(Succ(Succ(x3))), z1, z2, Pos(Succ(Succ(x3))), x_removed) → new_takeWhile3(z2, z1, new_primPlusInt(z1, z2), x_removed)
new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero)), x_removed) → new_takeWhile13(x_removed, z1, z2, x_removed)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_takeWhile3(yx36, yx47, yx61) → new_takeWhile12(yx36, yx47, yx61, yx36) we obtained the following new rules:

new_takeWhile3(Pos(Succ(Zero)), x1, x2) → new_takeWhile12(Pos(Succ(Zero)), x1, x2, Pos(Succ(Zero)))
new_takeWhile3(Pos(Succ(Succ(y_0))), x1, x2) → new_takeWhile12(Pos(Succ(Succ(y_0))), x1, x2, Pos(Succ(Succ(y_0))))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
QDP
                                        ↳ RemovalProof
                                        ↳ RemovalProof
                                        ↳ MNOCProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero))) → new_takeWhile13(Pos(Succ(Zero)), z1, z2)
new_takeWhile3(Pos(Succ(Zero)), x1, x2) → new_takeWhile12(Pos(Succ(Zero)), x1, x2, Pos(Succ(Zero)))
new_takeWhile3(Pos(Succ(Succ(y_0))), x1, x2) → new_takeWhile12(Pos(Succ(Succ(y_0))), x1, x2, Pos(Succ(Succ(y_0))))
new_takeWhile13(Pos(Succ(Zero)), z0, z1) → new_takeWhile3(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile12(Pos(Succ(Succ(x3))), z1, z2, Pos(Succ(Succ(x3)))) → new_takeWhile3(z2, z1, new_primPlusInt(z1, z2))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables Pos(Succ(Zero)) is replaced by the fresh variable x_removed.
Pair: new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero))) → new_takeWhile13(Pos(Succ(Zero)), z1, z2)
Positions in right side of the pair: Pair: new_takeWhile3(Pos(Succ(Zero)), x1, x2) → new_takeWhile12(Pos(Succ(Zero)), x1, x2, Pos(Succ(Zero)))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[13].

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ RemovalProof
QDP
                                        ↳ RemovalProof
                                        ↳ MNOCProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile13(Pos(Succ(Zero)), z0, z1, x_removed) → new_takeWhile3(z1, z0, new_primPlusInt(z0, z1), x_removed)
new_takeWhile3(Pos(Succ(Succ(y_0))), x1, x2, x_removed) → new_takeWhile12(Pos(Succ(Succ(y_0))), x1, x2, Pos(Succ(Succ(y_0))), x_removed)
new_takeWhile12(Pos(Succ(Succ(x3))), z1, z2, Pos(Succ(Succ(x3))), x_removed) → new_takeWhile3(z2, z1, new_primPlusInt(z1, z2), x_removed)
new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero)), x_removed) → new_takeWhile13(x_removed, z1, z2, x_removed)
new_takeWhile3(Pos(Succ(Zero)), x1, x2, x_removed) → new_takeWhile12(x_removed, x1, x2, x_removed, x_removed)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables Pos(Succ(Zero)) is replaced by the fresh variable x_removed.
Pair: new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero))) → new_takeWhile13(Pos(Succ(Zero)), z1, z2)
Positions in right side of the pair: Pair: new_takeWhile3(Pos(Succ(Zero)), x1, x2) → new_takeWhile12(Pos(Succ(Zero)), x1, x2, Pos(Succ(Zero)))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[13].

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ RemovalProof
                                        ↳ RemovalProof
QDP
                                        ↳ MNOCProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile13(Pos(Succ(Zero)), z0, z1, x_removed) → new_takeWhile3(z1, z0, new_primPlusInt(z0, z1), x_removed)
new_takeWhile3(Pos(Succ(Succ(y_0))), x1, x2, x_removed) → new_takeWhile12(Pos(Succ(Succ(y_0))), x1, x2, Pos(Succ(Succ(y_0))), x_removed)
new_takeWhile12(Pos(Succ(Succ(x3))), z1, z2, Pos(Succ(Succ(x3))), x_removed) → new_takeWhile3(z2, z1, new_primPlusInt(z1, z2), x_removed)
new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero)), x_removed) → new_takeWhile13(x_removed, z1, z2, x_removed)
new_takeWhile3(Pos(Succ(Zero)), x1, x2, x_removed) → new_takeWhile12(x_removed, x1, x2, x_removed, x_removed)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ RemovalProof
                                        ↳ RemovalProof
                                        ↳ MNOCProof
QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile12(Pos(Succ(Zero)), z1, z2, Pos(Succ(Zero))) → new_takeWhile13(Pos(Succ(Zero)), z1, z2)
new_takeWhile3(Pos(Succ(Zero)), x1, x2) → new_takeWhile12(Pos(Succ(Zero)), x1, x2, Pos(Succ(Zero)))
new_takeWhile3(Pos(Succ(Succ(y_0))), x1, x2) → new_takeWhile12(Pos(Succ(Succ(y_0))), x1, x2, Pos(Succ(Succ(y_0))))
new_takeWhile13(Pos(Succ(Zero)), z0, z1) → new_takeWhile3(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile12(Pos(Succ(Succ(x3))), z1, z2, Pos(Succ(Succ(x3)))) → new_takeWhile3(z2, z1, new_primPlusInt(z1, z2))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

Q is empty.
We have to consider all (P,Q,R)-chains.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ Instantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile4(Pos(Succ(yx2800)), yx58, yx60) → new_takeWhile14(Pos(Succ(yx2800)), yx58, yx60, yx2800)
new_takeWhile4(Pos(Zero), yx58, yx60) → new_takeWhile15(Pos(Zero), yx58, yx60)
new_takeWhile14(yx27, yx57, yx28, yx3000) → new_takeWhile16(yx27, yx57, yx28)
new_takeWhile16(yx27, yx58, yx28) → new_takeWhile4(yx28, yx58, new_primPlusInt(yx58, yx28))
new_takeWhile4(Neg(Zero), yx58, yx60) → new_takeWhile15(Neg(Zero), yx58, yx60)
new_takeWhile15(yx27, yx58, yx28) → new_takeWhile4(yx28, yx58, new_primPlusInt(yx58, yx28))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_takeWhile14(yx27, yx57, yx28, yx3000) → new_takeWhile16(yx27, yx57, yx28) we obtained the following new rules:

new_takeWhile14(Pos(Succ(z0)), z1, z2, z0) → new_takeWhile16(Pos(Succ(z0)), z1, z2)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
QDP
                            ↳ Instantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile4(Pos(Succ(yx2800)), yx58, yx60) → new_takeWhile14(Pos(Succ(yx2800)), yx58, yx60, yx2800)
new_takeWhile14(Pos(Succ(z0)), z1, z2, z0) → new_takeWhile16(Pos(Succ(z0)), z1, z2)
new_takeWhile4(Pos(Zero), yx58, yx60) → new_takeWhile15(Pos(Zero), yx58, yx60)
new_takeWhile16(yx27, yx58, yx28) → new_takeWhile4(yx28, yx58, new_primPlusInt(yx58, yx28))
new_takeWhile4(Neg(Zero), yx58, yx60) → new_takeWhile15(Neg(Zero), yx58, yx60)
new_takeWhile15(yx27, yx58, yx28) → new_takeWhile4(yx28, yx58, new_primPlusInt(yx58, yx28))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_takeWhile15(yx27, yx58, yx28) → new_takeWhile4(yx28, yx58, new_primPlusInt(yx58, yx28)) we obtained the following new rules:

new_takeWhile15(Pos(Zero), z0, z1) → new_takeWhile4(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile15(Neg(Zero), z0, z1) → new_takeWhile4(z1, z0, new_primPlusInt(z0, z1))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
QDP
                                ↳ Instantiation
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile15(Pos(Zero), z0, z1) → new_takeWhile4(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile4(Pos(Succ(yx2800)), yx58, yx60) → new_takeWhile14(Pos(Succ(yx2800)), yx58, yx60, yx2800)
new_takeWhile15(Neg(Zero), z0, z1) → new_takeWhile4(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile4(Pos(Zero), yx58, yx60) → new_takeWhile15(Pos(Zero), yx58, yx60)
new_takeWhile14(Pos(Succ(z0)), z1, z2, z0) → new_takeWhile16(Pos(Succ(z0)), z1, z2)
new_takeWhile16(yx27, yx58, yx28) → new_takeWhile4(yx28, yx58, new_primPlusInt(yx58, yx28))
new_takeWhile4(Neg(Zero), yx58, yx60) → new_takeWhile15(Neg(Zero), yx58, yx60)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_takeWhile16(yx27, yx58, yx28) → new_takeWhile4(yx28, yx58, new_primPlusInt(yx58, yx28)) we obtained the following new rules:

new_takeWhile16(Pos(Succ(z0)), z1, z2) → new_takeWhile4(z2, z1, new_primPlusInt(z1, z2))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
QDP
                                    ↳ MNOCProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile15(Pos(Zero), z0, z1) → new_takeWhile4(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile4(Pos(Succ(yx2800)), yx58, yx60) → new_takeWhile14(Pos(Succ(yx2800)), yx58, yx60, yx2800)
new_takeWhile14(Pos(Succ(z0)), z1, z2, z0) → new_takeWhile16(Pos(Succ(z0)), z1, z2)
new_takeWhile4(Pos(Zero), yx58, yx60) → new_takeWhile15(Pos(Zero), yx58, yx60)
new_takeWhile15(Neg(Zero), z0, z1) → new_takeWhile4(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile16(Pos(Succ(z0)), z1, z2) → new_takeWhile4(z2, z1, new_primPlusInt(z1, z2))
new_takeWhile4(Neg(Zero), yx58, yx60) → new_takeWhile15(Neg(Zero), yx58, yx60)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ Instantiation
                          ↳ QDP
                            ↳ Instantiation
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ MNOCProof
QDP
                                        ↳ NonTerminationProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile15(Pos(Zero), z0, z1) → new_takeWhile4(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile4(Pos(Succ(yx2800)), yx58, yx60) → new_takeWhile14(Pos(Succ(yx2800)), yx58, yx60, yx2800)
new_takeWhile15(Neg(Zero), z0, z1) → new_takeWhile4(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile4(Pos(Zero), yx58, yx60) → new_takeWhile15(Pos(Zero), yx58, yx60)
new_takeWhile14(Pos(Succ(z0)), z1, z2, z0) → new_takeWhile16(Pos(Succ(z0)), z1, z2)
new_takeWhile16(Pos(Succ(z0)), z1, z2) → new_takeWhile4(z2, z1, new_primPlusInt(z1, z2))
new_takeWhile4(Neg(Zero), yx58, yx60) → new_takeWhile15(Neg(Zero), yx58, yx60)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

new_takeWhile15(Pos(Zero), z0, z1) → new_takeWhile4(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile4(Pos(Succ(yx2800)), yx58, yx60) → new_takeWhile14(Pos(Succ(yx2800)), yx58, yx60, yx2800)
new_takeWhile15(Neg(Zero), z0, z1) → new_takeWhile4(z1, z0, new_primPlusInt(z0, z1))
new_takeWhile4(Pos(Zero), yx58, yx60) → new_takeWhile15(Pos(Zero), yx58, yx60)
new_takeWhile14(Pos(Succ(z0)), z1, z2, z0) → new_takeWhile16(Pos(Succ(z0)), z1, z2)
new_takeWhile16(Pos(Succ(z0)), z1, z2) → new_takeWhile4(z2, z1, new_primPlusInt(z1, z2))
new_takeWhile4(Neg(Zero), yx58, yx60) → new_takeWhile15(Neg(Zero), yx58, yx60)

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)


s = new_takeWhile4(Pos(Zero), yx58, new_primPlusInt(Neg(Zero), Pos(Zero))) evaluates to t =new_takeWhile4(Pos(Zero), yx58, new_primPlusInt(yx58, Pos(Zero)))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

new_takeWhile4(Pos(Zero), Neg(Zero), new_primPlusInt(Neg(Zero), Pos(Zero)))new_takeWhile4(Pos(Zero), Neg(Zero), new_primMinusNat0(Zero, Zero))
with rule new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260) at position [2] and matcher [yx230 / Zero, yx260 / Zero]

new_takeWhile4(Pos(Zero), Neg(Zero), new_primMinusNat0(Zero, Zero))new_takeWhile4(Pos(Zero), Neg(Zero), Pos(Zero))
with rule new_primMinusNat0(Zero, Zero) → Pos(Zero) at position [2] and matcher [ ]

new_takeWhile4(Pos(Zero), Neg(Zero), Pos(Zero))new_takeWhile15(Pos(Zero), Neg(Zero), Pos(Zero))
with rule new_takeWhile4(Pos(Zero), yx58, yx60) → new_takeWhile15(Pos(Zero), yx58, yx60) at position [] and matcher [yx60 / Pos(Zero), yx58 / Neg(Zero)]

new_takeWhile15(Pos(Zero), Neg(Zero), Pos(Zero))new_takeWhile4(Pos(Zero), Neg(Zero), new_primPlusInt(Neg(Zero), Pos(Zero)))
with rule new_takeWhile15(Pos(Zero), z0, z1) → new_takeWhile4(z1, z0, new_primPlusInt(z0, z1))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate4(yx17) → new_iterate4(new_ps4(yx17))

The TRS R consists of the following rules:

new_primPlusNat0(Zero, Zero) → Zero
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Neg(yx260), Neg(yx230)) → Neg(new_primPlusNat0(yx260, yx230))
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_ps4(yx17) → new_primPlusInt(Pos(Zero), yx17)
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))
new_primPlusInt(Neg(yx260), Pos(yx230)) → new_primMinusNat0(yx230, yx260)
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_ps4(x0)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate4(yx17) → new_iterate4(new_ps4(yx17))

The TRS R consists of the following rules:

new_ps4(yx17) → new_primPlusInt(Pos(Zero), yx17)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_ps4(x0)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primMinusNat0(Zero, Zero) → Pos(Zero)
new_primMinusNat0(Succ(yx2600), Zero) → Pos(Succ(yx2600))

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = 1 + 2·x1   
POL(Pos(x1)) = 2·x1   
POL(Succ(x1)) = x1   
POL(Zero) = 0   
POL(new_iterate4(x1)) = 2·x1   
POL(new_primMinusNat0(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(new_primPlusInt(x1, x2)) = 2·x1 + x2   
POL(new_primPlusNat0(x1, x2)) = 2·x1 + x2   
POL(new_ps4(x1)) = x1   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ RuleRemovalProof
QDP
                                ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate4(yx17) → new_iterate4(new_ps4(yx17))

The TRS R consists of the following rules:

new_ps4(yx17) → new_primPlusInt(Pos(Zero), yx17)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_ps4(x0)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primMinusNat0(Succ(yx2600), Succ(yx2300)) → new_primMinusNat0(yx2600, yx2300)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = x1   
POL(Pos(x1)) = 2·x1   
POL(Succ(x1)) = 2 + x1   
POL(Zero) = 0   
POL(new_iterate4(x1)) = 2·x1   
POL(new_primMinusNat0(x1, x2)) = 2·x1 + x2   
POL(new_primPlusInt(x1, x2)) = x1 + x2   
POL(new_primPlusNat0(x1, x2)) = x1 + x2   
POL(new_ps4(x1)) = x1   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
QDP
                                    ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate4(yx17) → new_iterate4(new_ps4(yx17))

The TRS R consists of the following rules:

new_ps4(yx17) → new_primPlusInt(Pos(Zero), yx17)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)
new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_ps4(x0)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primPlusNat0(Succ(yx2600), Zero) → Succ(yx2600)
new_primPlusNat0(Succ(yx2600), Succ(yx2300)) → Succ(Succ(new_primPlusNat0(yx2600, yx2300)))

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = x1   
POL(Pos(x1)) = x1   
POL(Succ(x1)) = 2 + x1   
POL(Zero) = 0   
POL(new_iterate4(x1)) = x1   
POL(new_primMinusNat0(x1, x2)) = x1 + x2   
POL(new_primPlusInt(x1, x2)) = 2·x1 + x2   
POL(new_primPlusNat0(x1, x2)) = 2·x1 + x2   
POL(new_ps4(x1)) = x1   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
QDP
                                        ↳ Rewriting
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate4(yx17) → new_iterate4(new_ps4(yx17))

The TRS R consists of the following rules:

new_ps4(yx17) → new_primPlusInt(Pos(Zero), yx17)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_ps4(x0)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_iterate4(yx17) → new_iterate4(new_ps4(yx17)) at position [0] we obtained the following new rules:

new_iterate4(yx17) → new_iterate4(new_primPlusInt(Pos(Zero), yx17))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate4(yx17) → new_iterate4(new_primPlusInt(Pos(Zero), yx17))

The TRS R consists of the following rules:

new_ps4(yx17) → new_primPlusInt(Pos(Zero), yx17)
new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_ps4(x0)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate4(yx17) → new_iterate4(new_primPlusInt(Pos(Zero), yx17))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_ps4(x0)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_ps4(x0)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ NonTerminationProof
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_iterate4(yx17) → new_iterate4(new_primPlusInt(Pos(Zero), yx17))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)

The set Q consists of the following terms:

new_primMinusNat0(Succ(x0), Succ(x1))
new_primMinusNat0(Succ(x0), Zero)
new_primPlusInt(Pos(x0), Pos(x1))
new_primPlusNat0(Succ(x0), Zero)
new_primPlusNat0(Zero, Zero)
new_primPlusInt(Neg(x0), Neg(x1))
new_primMinusNat0(Zero, Succ(x0))
new_primPlusNat0(Zero, Succ(x0))
new_primPlusInt(Pos(x0), Neg(x1))
new_primPlusInt(Neg(x0), Pos(x1))
new_primMinusNat0(Zero, Zero)
new_primPlusNat0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_iterate4(yx17) → new_iterate4(new_primPlusInt(Pos(Zero), yx17))

The TRS R consists of the following rules:

new_primPlusInt(Pos(yx260), Pos(yx230)) → Pos(new_primPlusNat0(yx260, yx230))
new_primPlusInt(Pos(yx260), Neg(yx230)) → new_primMinusNat0(yx260, yx230)
new_primMinusNat0(Zero, Succ(yx2300)) → Neg(Succ(yx2300))
new_primPlusNat0(Zero, Zero) → Zero
new_primPlusNat0(Zero, Succ(yx2300)) → Succ(yx2300)


s = new_iterate4(yx17) evaluates to t =new_iterate4(new_primPlusInt(Pos(Zero), yx17))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_iterate4(yx17) to new_iterate4(new_primPlusInt(Pos(Zero), yx17)).





↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile17(yx21, :(yx180, yx181)) → new_takeWhile18(yx180, yx181, yx180)
new_takeWhile18(yx21, yx18, Neg(Zero)) → new_takeWhile17(yx21, yx18)
new_takeWhile19(yx21, :(yx180, yx181)) → new_takeWhile18(yx180, yx181, yx180)
new_takeWhile18(yx21, :(yx180, yx181), Pos(Zero)) → new_takeWhile18(yx180, yx181, yx180)
new_takeWhile18(yx21, yx18, Neg(Succ(yx2200))) → new_takeWhile19(yx21, yx18)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ NumRed
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_map(:(yx130, yx131), ba) → new_map(yx131, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:


Haskell To QDPs